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Single Sample Face Recognition via Learning Deep
Supervised Auto-Encoders

Shenghua Gao, Yuting Zhang, Kui Jia, Jiwen Lu, Yingying Zhang

Abstract—This paper targets learning robust image represen-
tation for single training sample per person face recognition.
Motivated by the success of deep learning in image representa-
tion, we propose a supervised auto-encoder, which is a new type
of building block for deep architectures. There are two features
distinct our supervised auto-encoder from standard auto-encoder.
First, we enforce the faces with variants to be mapped with
the canonical face of the person, for example, frontal face with
neutral expression and normal illumination; Second, we enforce
features corresponding to the same person to be similar. As a
result, our supervised auto-encoder extracts the features which
are robust to variances in illumination, expression, occlusion,
and pose, and facilitates the face recognition. We stack such
supervised auto-encoders to get the deep architecture and use
it for extracting features in image representation. Experimental
results on the AR, Extended Yale B, CMU-PIE, and Multi-PIE
datasets demonstrate that by coupling with the commonly used
sparse representation based classification, our stacked supervised
auto-encoders based face representation significantly outperforms
the commonly used image representations in single sample
per person face recognition, and it achieves higher recognition
accuracy compared with other deep learning models, including
the deep Lambertian network, in spite of much less training
data and without any domain information. Moreover, supervised
auto-encoder can also be used for face verification, which further
demonstrates its effectiveness for face representation.

Index Terms—Single training sample per person; Face recog-
nition; Supervised Auto-encoder; Deep architecture

I. INTRODUCTION

Single sample per person (SSPP) face recognition [1], [2]1

is a very important research topic in computer vision because
of its potential applications in many realistic scenarios like
passport identification, gate ID identification, video surveil-
lance, etc. However, as shown in Fig. 1, there is only one
training image (gallery image) in SSPP, and the faces to be
recognized may contain lots of variances in, for example,
illumination, expression, occlusion, pose, etc. Therefore, SSPP
face recognition is an extremely challenging task.

Because of the presence of such challenging intra-class
variances, a robust face representation which can overcome
the effect of these variances is extremely desirable, and will
greatly facilitate SSPP face recognition. However, restricted
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1SSPP is one specific task of one shot learning [3]
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Fig. 1. Samples of gallery images (the first column) and probe images (the
rest faces) on the AR, Extended Yale B, CMU-PIE, and Multi-PIE datasets.

by having only one training sample for each person, the
commonly used subspace analysis based face representation
methods, like Eigenfaces [4] and Fisherfaces [5], are no
longer suitable nor applicable to SSPP. To seek a good SSPP
image representation, lots of endeavors have been made which
achieve some good performance under certain settings. For
example, with the help of manually generated virtual faces [6]
or an external dataset [1], traditional face representation meth-
ods can be extended to the SSPP scenario. However, the
performance of these methods is still not unsatisfactory for
challenging real data. After representing each face with a fea-
ture vector, a classification technique, like Nearest Neighbor,
sparse representation based classification (SRC) [7], can be
used to predict the labels of the probe images.

Deep neural networks have demonstrated their great suc-
cesses in image representation [8], [9], and their fundamental
ingredient is the training of a nonlinear feature extractor at
each layer [10], [11], [12]. After the layer-wise training of
each building block and the building of a deep architecture, the
output of the network is used for the image representation in
the subsequent task. As a typical building block in deep neural
networks, Denoising Auto-Encoder [11] extracts the features
through a deterministic nonlinear mapping, and it is robust
to the noises of the data. Image representations based on the
denoising auto-encoder have shown good performance in many
tasks, like object recognition, digit recognition, etc. Motivated
by the success of denoising auto-encoder based deep neural
networks, and driven by the SSPP face recognition, we propose
a supervised auto-encoder to build the deep neural network.
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We first treat the faces with all type of variants (for exam-
ple, illumination, expression, occlusion, or poses) as images
contaminated by noises. With a supervised auto-encoder, we
can recover the face without the variant, meanwhile, such a
supervised auto-encoder also extracts robust features for image
representation in SSPP scenario, i.e., the features correspond-
ing to the same person should have the same (ideally) or
similar features, and such features should be stable to the intra-
class variances which commonly exist in the SSPP scenario.

The contributions of this paper are two-fold. Firstly, we
propose a new type of building block – supervised auto-
encoder, for building the deep neural network. Different from
standard Auto-Encoder, on the one hand, we enforce all the
faces with variances to be mapped with the canonical face of
the person, for example, frontal face with neutral expression
and normal illumination. Such strategy helps remove the vari-
ances in face recognition. On the other hand, by imposing the
similarity preservation constraints on the extracted features,
the supervised auto-encoder makes the features corresponding
to the same person similar, therefore it extracts more robust
features for face representation. Secondly, by leveraging the
supervised auto-encoder, robust features can be extracted for
image representation in SSPP face recognition, therefore im-
proves the recognition accuracy of SSPP.

The rest of the paper is organized as follows: we will
review the related work, including the commonly used image
representation methods for SSPP scenario as well as the
auto-encoder and its variants in Section II. In Section III,
we will introduce our supervised auto-encoder, and discuss
its application in SSPP. We will experimentally evaluate the
proposed technique and its parameters in Section IV, and
conclude our work in Section V.

II. RELATED WORK

I: Work Related to SSPP Face Representation.
Though subspace analysis based methods are usually adopted
for effective and efficient face representation in general face
recognition, they are no longer suitable nor applicable to the
SSPP scenario. On the one hand, because of the limited num-
ber of gallery images and uncertainty of the variances between
probe images and gallery image, it is not easy to estimate
the data distribution and get the proper projection matrix
for unsupervised methods, like Eigenfaces[4], 2DPCA [13],
etc. To make these unsupervised methods more suitable for
SSPP, by taking advantage of some virtual faces generated by
different methods, Projection-Combined Principal Component
Analysis ((PC)2A) [14], Enhanced (PC)2A (E(PC)2A) [15],
etc., have been proposed. On the other hand, to make FL-
DA [5] based image representation able to be used in the
SSPP case where the intra-class variance is impossible to
be directly estimated because only one training sample is
provided for each person, virtual samples are usually gen-
erated by using small perturbation [16], transformation [17],
SVD decomposition [6], or subimages generated by dividing
each image into small patches [18]. Moreover, the intra-class
variances can also be estimated from a generic dataset [1],
[19], where each subject contains images with variances in

pose, expression, illumination, occlusion, etc. Recently, with
the emergence of deep learning technique, Tang et al. propose
a Deep Lambertian Network (DLN) [20] which combines
Deep Belief Nets [10] with Lambertian reflection assumption.
Therefore DLN extracts illumination invariant features for
face representation and it also shows good performance under
SSPP setting, but it is not able to handle other variances,
like expressions, poses, occlusions, etc., which restricts its
application in real world problems.
II: Work Related to Auto-Encoder.
Auto-encoder which is also termed as autoassociator or Dia-
bolo network, is one of the commonly used building blocks
in deep neural networks. It contains two modules. (i) A
encoder maps the input x to the hidden nodes through some
deterministic mapping function f : h = f(x). (ii) A decoder
maps the hidden nodes back to the original input space
through another deterministic mapping function g: x′ = g(h).
For real-valued input, by minimizing the reconstruction error
∥x − g(f(x))∥22, the parameters of encoder and decoder can
be learnt. Then the output of the hidden layer is used as the
feature for image representation. It has been shown that such
a nonlinear auto-encoder is different from PCA [21], and it
has been proven that “training an auto-encoder to minimize
reconstruction error amounts to maximizing a lower bound on
the mutual information between input and the learnt represen-
tation” [11]. To further boost the ability of auto-encoder for
image representation in building deep networks, Vincent et
al. [11] propose a denoising auto-encoder which enhances its
generalization by training with locally corrupted inputs. Rafai
et al. enhance the robustness of auto-encoder to noises by
adding the Jacobian [22], or Jacobian and Hessian at the same
time [23], into the objective of basic auto-encoder. Zhou et
al. [24] use the pooling operation after the Reconstruction
Independent Component Analysis [25] encoding process, and
enforce the pooled features to be similar for instances with the
same class label. These extensions improve the performance of
auto-encoder based neural networks for image representation
in object and digit recognition.
III: Deep Learning based Face Verification Systems.
In [26], a Siamese Networks is proposed for face verification
and such SN is based on Convolutional Neural Network
in [26]. In the experiment, we have tried different settings
and use the one with the best performance. As the SN is
proposed for face verification, to do the face recognition,
we run face verification over all pairs of faces in the test
gallery set and choose the pair that’s most similar. In this way,
we can predict the label of the probe. Recently, Taigman et
al. also propose a Convolutional Neural Networks based face
verification system [27], which significantly outperforms the
existing hand-crafted features based systems on the Labeled
Face in the Wild (LFW) database. Similarly, Fan et al. also
use another variant of convolutional neural network which
is termed as Pyramid CNN, for face verification, and also
achieve similar performance on the LFW database. But these
works are proposed for face verification, where a pair of faces
are given and the algorithm identifies whether the two faces
belonging to the same person or not (a random guess is 50%).
Our task solves face recognition in which, given a test image,
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it tries to identify precisely the correct person among many.
Random guess gives one over the number of subjects. Besides
the tasks to be solved are different, the network architecture
of our paper is also different with these all existing works.
Moreover, our work is also closely related to the work of
Zhu et al. [28][29]. In [28], a supervised training is deployed
to train a network consisting of encoding layer and pooling
layer. In [29], multiple CNN networks trained on different
regions of face and a regression layer are trained to solve the
face verification task. Similar to these work, our work also
makes faces of the same person be represented similarly, but
we are based on different architectures. Moreover, different
from [28][29], features learnt by our method is not designed
for some specific task. As shown later, our model can also be
used for face recognition or face verification.

III. SUPERVISED AUTO-ENCODER FOR SSPP FACE
REPRESENTATION

The motivation of our supervised auto-encoder for SSP-
P face representation comes from the denoising auto-
encoder [11]. In this section, we will first revisit the de-
noising auto-encoder. Then we will propose our supervised
auto-encoder, its formulation, its optimization, its differences
with denoising auto-encoder, and its application in SSPP face
representation.

A. A Revisit of Denoising Auto-Encoder

A denoising auto-encoder tries to reconstruct the clean
input data by using the manually corrupted version of it.
Mathematically, denote the input as x. In denoising auto-
encoder, input x is first corrupted by some predefined noise,
for example, Additive Gaussian noise (x̃|x ∼ N(x, σ2I)),
masking noise (a fraction of x is forced to 0), or salt-
and-pepper noise (a fraction of x is forced to be 0 or 1).
Such a corrupted x̃ is used as the input of the encoder
h = f(x̃) = sf (Wx̃ + bf ). Then the output of encoder
h is input into the decoder x̂ = g(h) = sg(W

′h + bg).
Here sf and sg are predefined activation functions of encoder
and decoder respectively, which can be sigmoid functions,
hyperbolic tangent functions, or rectifier functions [30], etc.
W ∈ Rdh×dx and bf ∈ Rdh are the parameters of encoder, and
W ′ ∈ Rdx×dh and bg ∈ Rdx are the parameters of decoder. dx
and dh are the dimensionality of input data and the number
of hidden nodes respectively. Based on the above definitions,
the objective of denoising auto-encoder is given as follows:

min
W,W ′,bf ,bg

∑
x∈X

L(x, x̂) (1)

Here L is the reconstruction error, typically squared error
L(x, x̂) = ∥x − x̂∥2 for real-valued inputs. After learning
f and g, the output of clean input (f(x)) is used as the
input of the next layer. By training such denoising auto-
encoder layer by layer, stacked denoising auto-encoders are
built. Experimental results show that stacked denoising auto-
encoders greatly improve the generalization performance of
the neural network. Even when the fraction of corrupted pixels
(corrupted by zero masking noises) reaches up to 55%, the

recognition accuracy is still better or comparable with that of
a network trained without corruptions.

B. Supervised Auto-Encoder

In real applications, like passport or Gate ID identification,
the only training sample (gallery image) for each person is
usually a frontal face with frontal/uniform lighting, neutral
expression, and no occlusion. However, the test faces (probe
images) are usually accompanied by variances in illumination,
occlusion, expression, pose, etc. Compared to the denoising
auto-encoder, these gallery images can be seen as clean data
and these probe images can be seen as corrupted data. For
robust face recognition, we desire to learn the features which
are robust to these variances. The success of denoising auto-
encoder convinces us of the possibility to learn such features.
Then the problem becomes: How do we learn a mapping
function which captures the discriminative structures of the
faces of different persons , while staying robust to the possible
variances of these faces? Once such a function is learnt,
robust features can be extracted for image presentation, with
an expected improvement to the performance of SSPP face
recognition.

Given a set of data which contain the gallery images (clean
data), probe images (corrupted data) as well as their labels,
we use them to train a deep neural network for feature
extraction. We denote each probe image in this dataset as x̃i,
and its corresponding gallery image as xi (i = 1, . . . , N ). It
is desirable that xi and x̃i should be represented similarly.
Therefore the following formulation is proposed (following
the work [11], [22], only the tied weights case is explored in
this paper, i.e., W ′ = WT ):

min
W,bf ,bg

1

N

∑
i

(
∥xi − g(f(x̃i))∥22 + λ∥f(xi)− f(x̃i)∥22

)
+ α

(
KL(ρx||ρ0) + KL(ρx̃||ρ0)

)
(2)

where

ρx =
1

N

∑
i

1

2
(f(xi) + 1),

ρx̃ =
1

N

∑
i

1

2
(f(x̃i) + 1),

KL(ρ||ρ0) =
∑
j

(
ρ0 log(

ρ0
ρj

) + (1− ρ0) log(
1− ρ0
1− ρj

)
)
.

(3)

In this paper, the activation functions used are the hyperbolic
tangent, i.e., h = f(x) = tanh(Wx + bf ), and g(h) =
tanh(WTh+ bg).

We list the properties of the supervised auto-encoder as
follows:

1) The first term in equation (2) is the reconstruction error. It
means that though gallery images contain some variances,
after passing through the encoder and the decoder, they
will be repaired. In this way, our learnt model is robust to
the variances of expression, occlusion, pose, etc., which
are quite different to the noises in the Denoising Auto-
encoder.
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Fig. 2. Architecture of Staked Supervised Auto-Encoders. The left figure: The basic supervised auto-encoder, which is comprised of the clean/“corrupted”
faces, there features (hidden layer), as well as the reconstructed clean face by using the “corrupted face”. The middle figure: The output of previous hidden
layer is used as the input to train the next supervised auto-encoder. We repeat such training several times until the desired number of hidden layers is reached.
In this paper, only two hidden layers are used. The right figure: Once the network is trained, given any input face, the output of the last hidden layer is used
as the feature for image representation.

2) The second term in equation (2) is the similarity preser-
vation term. Since the output of the hidden layer is used
as the feature, f(xi) and f(x̃i) correspond to the features
of the same person. It is desirable that they should be the
same (ideally) or similar. Such a constraint enforces the
learning of a nonlinear mapping robust to the variances
that commonly appear in SSPP.

3) The third and the fourth term, the Kullback-Leiber diver-
gence (KL divergence) terms in equation (2) introduce
sparsity in the hidden layer. Work from biological studies
shows that the percentage of the activated neurons of
human brain at the same time is around 1% to 4% [31].
Therefore the sparsity constraint on the activation of the
hidden layer is commonly used in the auto-encoder based
neural networks and results show that sparse auto-encoder
often achieves better performance [32] than that trained
without the sparsity constraint. Since the activation func-
tion we used is the hyperbolic tangent, its output is
between -1 and 1, where the value of -1 is regarded as
non-activated [33]. Therefore we map the output of the
encoder to the range (0,1) first in equation (3). Here ρx
and ρx̃ are the mapped average activations of the clean
data and the corrupted data respectively. By choosing
a small ρ0, the KL divergence regularizer enforces that
only a few fraction of neurons are activated [34], [33].
Following the work [34], [33], we also set ρ0 to 0.05.

4) Weighting the first and the second term with 1
N (N is

the total number of training samples) helps balance the
contributions of the the first two terms and the last terms
in the optimization. Otherwise we may need to tune α
on different datasets because the training samples for
different datasets may be different.

5) We aim at learning an feature extractor to represent faces
corresponding to the same person similarly, but [35] and
[26] focus on learning a distance metric in the last layer of
their respective DNN architectures. Our work is different
from [35] and [26] in terms of network architecture and
application.

6) Since the labels of the faces are used while training this

building block, we term our proposed formulation as the
Supervised Auto-Encoder (SAE). We illustrate the idea
of such supervised auto-encoder in Fig 2 (the left figure).

C. Optimization of Supervised Auto-Encoder

The optimization method is very important for good per-
formance of deep neural networks. Following the work [36],
[37], the entries of W are randomly sampled from the uniform
distribution between [−

√
6

dh+dx
,
√

6
dh+dx

], and bf and bg
are initialized with zero vectors. It is worth noting that such
normalized initialization is very important for the good perfor-
mance of Auto-Encoder based method “presumably because
the layer-to-layer transformations maintain magnitudes of ac-
tivations (flowing upward) and gradients (flowing backward)
[36]”. Then the Limited memory BroydenCFletcherCGold-
farbCShanno (L-BFGS) algorithm is used for learning the
parameters because of its faster convergence rate and better
performance compared to stochastic gradient descent methods
and conjugate gradient [38] methods.

As the computational cost of the similarity preservation
term (the 2nd term in equation (2)) and the calculation of its
gradient with respect to the unknown parameters is almost the
same with that of the reconstruction error term, the overall
computational complexity is still O(dx × dh) [22] in our
supervised auto-encoder.

D. Stacking Supervised Auto-Encoders to Build Deep Archi-
tecture

Deep neural networks demonstrate better performance for
image representation than shallow neural networks [32].
Therefore we also train the supervised auto-encoder in a layer-
wise manner and get the deep architecture. Here we term such
an architecture as the Stacked Supervised Auto-Encoders
(SSAE). After learning the activation function of the encoder
in previous layer, it is applied to the clean data and corrupted
data respectively, and the outputs serve as the clean input data
and corrupted input data to train the supervised auto-encoder in
the next layer. Once the whole network is trained, the output
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of the highest layer will be used as the feature for image
representation. We illustrate this learning strategy in Fig. 2.

E. The Differences Between Stacked Supervised Auto-
Encoders and Stacked Denoising Auto-Encoders

Our stacked auto-encoders are different from the stacked
denoising auto-encoders in the following three aspects:
1. Input. Denoising auto-encoder is an unsupervised feature
learning method, and the corrupted data are generated by
manually corrupting the clean data with predefined noises.
Therefore the trained model is robust to these predefined
noises. However, in our supervised denoising auto-encoder, the
corrupted data are the photos taken under different settings,
and they are physically meaningful data. By enforcing the
reconstructed probe image to be similar to its gallery image,
we can overcome the possible variances which appear in SSPP
face recognition, and which are quite different from the noises
in denoising auto-encoder. This is why our supervised auto-
encoder needs the labels of data to train the network.
2. Formulation. The similarity preservation term is used to
further emphasize the desired property of SSPP image repre-
sentation. Though we enforce the reconstructed probe image
to be similar to the gallery image, it cannot be guaranteed that
the extracted features of them are similar because the variances
in pose, expression, illumination, etc. can make the probe and
the gallery quite different. But in SSPP face recognition, it
is desirable that the images of the same person have similar
representation. To this end, the similarity preservation term
is added to the objective of SAE in equation (2). Such term
further makes the extracted features be robust to the variances
in face recognition. As shown in Section IV-F, this term greatly
improves the recognition accuracy, especially for the cases
with large intra-class variances.
3. Building a deep architecture. In stacked denoising auto-
encoders, once the activation function of the encoder in
previous layer is trained, it maps the clean data to the hidden
layer, and the outputs serve as the clean input data of next
layer SAE. Then the noises which are generated in the same
way with that in the previous layer are added on the clean
data to serve as the corrupted data. As claimed in [34], since
the features in the hidden layer are no longer in the same
feature space with the input data, the meaning of applying the
noises generated in the same way with that in previous layer
to the output of the hidden layer is no longer clear. Similar
to [34], we apply the activation function of the encoder to
both the clean data and the corrupted data, and their outputs
serve as the clean and corrupted input data of the next layer.
Hence this way of stacking the basic supervised auto-encoders
is more natural for building a deep architecture.

IV. EXPERIMENTS

In this section, we will experimentally evaluate the stacked
supervised auto-encoder for extracting the features in SSPP
face recognition task on Extended Yale B, CMU-PIE, and
AR datasets. Important parameters will also be experimentally
evaluated. Besides face recognition, we also use stacked super-
vised auto-encoder for face verification on the LFW dataset.

A. Experimental Setup

We use the Extended Yale B, AR, and CMU-PIE, and
Multi-PIE datasets for evaluation of the effectiveness of the
proposed SSAE model. All the images are gray-scale images
and are manually aligned.2 The image size is 32×32. Thus the
dimensionality of the input vector is 1024. Each input feature
is normalized with the ℓ2 normalization. We set λ = λ0× dx

dh
.

Further, we set λ0 = 10 on the CMU-PIE and Multi-PIE
dataset, and set λ0 = 5 on the AR and the Extended Yale
B datasets. The reason for this is that the variances are more
significant on the CMU-PIE and Multi-PIE dataset than that
of the AR or the Extended Yale B datasets. The weight
corresponding to the KL divergency term (α) is fixed to be
10−4. Following the work [11], we fix the number of the
hidden nodes in all the hidden layers to be 2048. In our
experiments, we found that two hidden layers already give a
sufficiently good performance. After extracting features with
stacked supervised auto-encoders for face representation, fol-
lowing the work [7], sparse representation based classification
is used for face recognition. The features are normalized to
make their ℓ2 norms equal to 1 before sparse coding.

Baselines. We compare our Stacked Supervised Auto-
Encoders (SSAE) with the following work because of their
close relationships. It is also worth noting that all the com-
parisons are based on the same training/test set, and the same
generic data if they are used.

1) Sparse Representation for Classification (SRC) [7] with
raw pixels;

2) LBP feature followed by SRC;
3) Collaborative Representation for Classification (CRC)

[39].
4) AGL [1];
5) One-Shot Similarity Kernel (OSS) [40]. The generic data

are used as the negative data in OSS, i.e., we use the
same generic/training/testing split for both OSS and our
SAE.

6) Denoising Auto-Encoder (DAE) [11] with 10% masking
noises followed by SRC;

7) Modified Denoising Auto-Encoder (MDAE). We propose
to use the reconstruction error term only in equation (2)
(λ = α = 0), and term such baseline method as Modified
Denoising Auto-Encoder (MDAE);

2In all our experiments, faces are cropped based on manually labeled
landmark points, and aligned based landmark points. We also tested our work
with the faces cropped with the OpenCV face detector on the AR dataset,
but the performance of our work on such data is less than 50% on AR. One
possible reason for such poor performance is that we don’t have enough data
to train a deep network to be robust to the misalignment. The combination
of our work with automatic face alignment method is our future work along
this direction.



6

8) Siamese network (SN)[26].3

In all these baseline methods, 1-3 correspond to the very
popular sparse coding related methods. 4-5 are specially
designed for SSPP, and 6-8 are most related deep learning
methods.4

B. Dataset Description

The CMU-PIE dataset [42] contains 41,368 images of 68
subjects. For each subject, the images are taken under 13
different poses, 4 different illumination conditions, and 4
different expressions. For each subject, we use the face images
taken with the frontal pose, neutral expression, and normal
lighting condition as the galleries, and use the rest of the
images taken with the poses C27, C29, C07, C05, C09 as
probes. We use images of 20 subjects to learn the SSAE, and
use the remaining 48 subjects for evaluation.

The AR dataset [43] contains over 4,000 frontal faces taken
from 126 subjects (70 men and 56 women) in two differ-
ent sessions, and the images contain variances in occlusion
(sunglasses or scarves), expression (neutral expression, smile,
angry, scream), and illumination. Some images contains both
occlusion and illumination variances. In our experiments, 20
subjects from session 1 are used as the generic set for training
the SSAE, and another 80 subjects also from session 1 are
used for evaluation.

The Extended Yale B dataset [44] contains 38 categories.
For each subject, we use the frontal faces whose light source
direction with respect to the camera axis is 0 degree azimuth
(‘A+000’) and 0 degree elevation (‘E+00’) as gallery images,
and use the rest of the images with different lighting conditions
as the probe images. Following the work of deep Lambertian
networks (DLN) [20], 28 categories are used to train the SSAE
and the remaining 10 categories which are from the original
Yale B dataset are used for evaluation.

The Multi-PIE dataset [45] contain images of 337 persons
taken under the four sessions over the span of 5 months.
For each persons, images are taken under 15 different view
angles and 19 different illuminations while displaying different
facial expressions. In our experiments, only the images with
the neutral expression, near frontal pose (0◦, 15◦, -15◦), and
different illuminations are used. For each person, the frontal
face with neutral expression, frontal illumination is used as

3We tried several different network architectures in order to get the best
experimental result for the Siamese network. Surprisingly, the one of the
best performers is the two-layer network which take a fully connected layer
(with 500 hidden units and the tanh non-linearity) as the first layer and the
Siamese as the second one. The original deep architecture proposed in [26]
(i.e. ”the basic architecture is C1-S2-C3-S4-C5-F6”) doesn’t work as well as
this simpler ones (With the architecture listed in [1], the accuracy of Siamese
Network on AR is below 60%). Probably, the limited size of our generic
training set make it difficult to train a good convolutional neural network
with deep architecture. Also as the image we used are well-aligned which is
different from [26], the convolutional layers in the original architecture might
become redundant.

4Because the codes of deepface [27] and Pyramid CNN [41] are not
available, and the implementation and preprocessing involves lots of tricks,
say very sophisticated alignment method and lots of outside data required
for network training, here we don’t compare our method with these works.
Another reason for not comparing with [27], [41] is that the task solved by
these methods is face verification, but our work solves the face verification
task.

the gallery and all the images are used as the probe. The 249
persons in session 1 are used as the evaluation, and the first
time appearance images corresponding to the other 88 persons
which only appear in session 2-4 are used to train the network.

C. Performance Evaluation

The performance of different methods on the AR, Extended
Yale B, CMU-PIE, and Multi-PIE datasets is listed in Table I,
Table II, and Table III. We can see that our SSAE outperforms
all the rest of the methods including those specially designed
methods for SSPP image representation, and it achieves the
best performance, which proves the effectiveness of SSAE for
extracting robust features for face representation. Needless to
say, SSAE based face representation can also be combined
with ESRC if another set of labeled data are provided.

I. SAE vs. hand-crafted features. The improvement of
the features learnt from our method over the popular LBP
features is between about 10% (C27) and 31% (C29) on the
CMU-PIE dataset, with larger improvements for subsets of
larger poses. On the AR dataset and the Extended Yale B
dataset where there is little pose variation, the improvement
of our method over LBP is still around 5%. Our method
also outperforms ESRC, which introduces a pre-trained intra-
class variance dictionary to extend the SRC method to the
SSPP case, and the improvement is very evident for cases of
large pose variance (e.g., CMU-PIE C07, C09, C29, Multi-
PIE 15, -15). Compared with ESRC, another advantage of
our method is speed. ESRC relies on the intra-class variance
dictionary to achieve good performance, and the size of such
dictionary is usually big. Such a big dictionary will increase
computational costs, but in our method, the dictionary size
in the sparse coding is the same with the number of gallery
faces. Thus our method is significantly faster than ESRC in
testing. For example, ESRC costs about 4.63 seconds to solve
sparse coding for each probe face on Extended Yale B, while
our method can solve the sparse coding in about 1.8 × 10−3

seconds. Here the number of atoms in intra-class variance
dictionary is 1746 on the Extended Yale B. Therefore the total
atoms in the dictionary is 1756 for ESRC. In our method,
the number of atoms in the dictionary of SRC is only 10.
All the methods are based on Matlab implementations, and
run on a Windows Server (64bit) with a 2.13GHz CPU and
16GB RAM. It is worth noting that as the intra-class variance
dictionary is very large on Multi-PIE, the optimization is very
slow, therefore we don’t include its performance on the Multi-
PIE dataset.

II. SAE vs. other DNNs. Compared with DAE, the im-
provement of our method is over 30% on all the datasets.
The reason for the poor performance of DAE for SSPP face
representation is that the training of DAE is unsupervised, and
zero masking noise is used to train the DAE. Therefore it is
natural that the trained DAE cannot handle the variances in
poses, expressions, etc. Different from DAE, MDAE enforces
the reconstructed faces of the probe images, which contain
the variances in expression, pose, etc, to be well aligned to
their gallery images (frontal faces), therefore its performance
is better than DAE, but it is still inferior to that of stacked
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SAE, especially for the cases with variance in pose and
expression on AR and CMU-PIE. In contrast, besides using
more appropriate reconstruction error term, our SAE also
enforces extracted features with the same person to be similar.
Therefore, SAE can overcome these variances in SSPP and
is more suitable for extracting features for face recognition.
Moreover, on the Extended Yale B dataset, the performance
of our method (83.97% when the number of hidden nodes is
1024, and 82.22% when the number of hidden nodes is 2048)
is better than the 81% obtained by Deep Lambertian Network
(DLN) [20], which is specially designed for removing the
illumination effect in SSPP face recognition [20]. In addition
to the 28 categories from the Extended Yale B, DLN also
uses the Toronto Face Database, which is a very large dataset
to train the network. Although we use much less data to
train the SAE and it does not use any domain information
about illumination model as in DLN, performance of SAE
is still better.5 In addition, our SAE also outperforms SN
on all the datasets. These experiments clearly demonstrate
the superiority of SAE for recognition tasks over other DNN
building blocks such as DAE and DLN.

III. More observations. We notice that as the poses of
probe images change, the performance drops notably on the
CMU-PIE. For example, the recognition accuracy drops at
least 10.83% (C09) compared with that of the frontal face
(C27) pose. Interestingly, we also notice that the performance
of C07 (look up) and C09 (look down) is slightly better than
C05 (look right) and C29 (look left). A possible reason is that
the missing parts of face are larger for C05 and C29 than that
in C07 and C09 (please refer to Fig. 1). Similar observations
can also be found on the Multi-PIE dataset in Table III where
the recognition accuracy also drops by around 30% if the poses
are non-frontal.

Moreover, some probe images and their reconstructed im-
ages on the AR dataset are also shown in Fig. 3. We can
see our method can remove the illumination, and recover
the neutral face from the faces with different expressions.
For the faces with occlusion, our method can also simulate
the faces without occlusion, but compared with illumination
and expression, it is more difficult to recover the face from
the occluded face because too much information is lost.
Such results are natural because human can infer the faces
with normal illumination and neutral expression from the
experience (For the deep neural networks, the experience is
learnt from the generic set). But it is also almost impossible
for our human to infer the occluded face parts because too
much information is missing.

Moreover, some probe images and their reconstructed im-
ages on the AR dataset are also shown in Fig. 3. We can
see our method can remove the illumination, and recover
the neutral face from the faces with different expressions.

5Because the results on the AR and CMU-PIE datasets and the codes for
DLN are not available for comparison, we don’t report its performance on
the AR and CMU-PIE datasets. But it is unlikely that DLN works well on
the AR and CMU-PIE as it is not designed to handle other variations in the
data such as poses, occlusions, expressions, etc. Moreover, the state-of-the-art
performance on Extended Yale B has reached 93.6% in terms of accuracy
under the SSPP setting in [46]. But the experimental setup in [46] is a little
different from that in our paper.

For the faces with occlusion, our method can also simulate
the faces without occlusion, but compared with illumination
and expression, it is more difficult to recover the face from
the occluded face because too much information is lost.
Such results are natural because human can infer the faces
with normal illumination and neutral expression from the
experience (For the deep neural networks, the experience is
learnt from the generic set). But it is also almost impossible
for our human to infer the occluded face parts because too
much information is missing.

TABLE I
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON THE

EXTENDED YALE B AND THE AR DATASETS. (%)

Method AR Extended Yale B
DAE 37.60 42.81

MDAE 80.63 80.95
DLN NA 81
SN 81.15 78.89

AGL 58.86 72.22
CRC 54.16 49.21
SRC 54.99 49.37
OSS 78.75 65.40
LBP 80.83 74.76

ESRC 81.25 75.56
SSAE 85.21 82.22

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON THE

CMU-PIE DATASET. (%)

Method C27 C05 C07 C09 C29
DAE 27.03 18.20 22.19 25.95 23.70

MDAE 78.40 42.35 54.31 63.19 44.27
SN 38.54 25.95 24.05 38.19 45.75

AGL 69.23 40.43 44.39 48.61 48.87
CRC 51.98 26.96 35.77 42.36 30.38
SRC 51.46 29.08 35.16 42.01 31.25
OSS 52.06 39.03 42.12 45.23 36.55
LBP 73.27 43.62 50.04 62.50 37.24

ESRC 81.83 67.35 62.4 70.23 65.28
SSAE 82.79 67.52 71.45 71.96 68.06

TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON THE

MULTI-PIE DATASET. (%)

0 -15 15
DAE 59.06 19.1 22.49

MDAE 71.34 20.46 24.12
AGL 87.82 58.37 56.1
CRC 62.88 8.47 10.42
SRC 70.13 9.66 9.46
LBP 64.24 26.89 29.04

SSAE 97.93 67.19 63.25

D. Evaluation of Similarity Preservation Term

The similarity preservation term, the second term in equa-
tion (2), is very important in the formulation of SAE. Here
we list the performance of different networks trained with the
formulation with and without this term in Table 4. It can be
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Fig. 3. A comparison between the original images and the reconstructed ones on the AR dataset.
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seen that this term improves the recognition by 3% for the
benign frontal face case (C27), about 10% for C09 and C07,
and about 29% for C05 and C29. We can see that improvement
in performance increases with the increase of the poses (the
misalignment of faces is larger for C05 and C29 than that in
C07 and C09). This validates that the similarity preservation
term indeed enhances the robustness of face representation,
especially for pose variations.

E. The Effect of Deep Architecture

As an example, we show the performance of the SSAE with
different layers on the Multi-PIE dataset. We can see that 2-
layer SSAE network outperforms the single layer network,
which demonstrates the effectiveness of the deep architecture.

F. Parameter Evaluation

a. Number of Hidden Nodes in Hidden Layers. We change
the number of hidden nodes from 512 to 4096 on the Extended
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Fig. 5. The effect of SSAE with different depth on the Multi-PIE dataset.

Yale B, and show their performance in Fig. 6 (top left). Results
show that the recognition accuracy is higher when the number
of hidden nodes is 1024 or 2048, which is the same or larger
than the dimensionality of the data. The reason for this is that
more hidden nodes usually increase the expressiveness of the
auto-encoder [32]. We also note that too many hidden nodes
actually decreases the accuracy. A possible reason is that the
data used for learning the network in our setting is not enough
(only images of 28 subjects are used to learn the parameters),
which may limit stability of the learnt network.
b. Weight of KL Terms (α). We plot the performance with
different α in Fig. 6 (top right). The poor performance when
α is too small (10−6) proves the importance of the sparsity
term. But if we impose too large weight on α (10−2), more
hidden nodes will hibernate for a given input, which affects
the sensitiveness of the model to the input, and may make
faces of different persons be represented similarly. This may
be the reason that for a value of 102, our model has the lowest
performance. So properly setting α is a requirement for the
good performance of our model. Similarly phenomenon also
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Fig. 6. The effect of different parameters in supervised auto-encoder on the
Extended Yale B dataset.

happens in sparse representation based face recognition [47],
too small or too large sparsity both will reduce the recognition
accuracy.
c. Weight of Similarity Preservation Term (λ). We plot the
performance of SSAE with different λ in Fig. 6 (bottom). The
poor performance with smaller λ0 (0.1 or 1) also demonstrates
the importance of the similarity preservation term. But if λ is
too big, the learnt network might become less discriminative
for different subjects as it enforces too strongly the similarity
of the learnt features for diverse samples. That leads to a drop
in performance for very large λ. Moreover, from the plot, we
see that good performance can be obtained for a fairly large
range of λ.

G. The Comparison of Different Activation Functions

Besides hyperbolic tangent, we also evaluate the perfor-
mance of SSAE with other activation functions, including
sigmoid and Rectified Linear Units (ReLU) [48]. To achieve
the sparsity in the hidden layer, different strategies are used
for different activation functions. Specifically, if the activation
function is sigmoid, the objective function is rewritten as
follows:

min
W,bf ,bg

1

N

∑
i

(
∥xi − g(f(x̃i))∥22 + λ∥f(xi)− f(x̃i)∥22

)
+ α

(
KL(ρx||ρ0) + KL(ρx̃||ρ0)

)
(4)

where

ρx =
1

N

∑
i

f(xi),

ρx̃ =
1

N

∑
i

f(x̃i),

KL(ρ||ρ0) =
∑
j

(
ρ0 log(

ρ0
ρj

) + (1− ρ0) log(
1− ρ0
1− ρj

)
)
.

(5)

If the activation function is ReLU, the objective function is
rewritten as follows:

min
W,bf ,bg

1

N

∑
i

(
∥xi − g(f(x̃i))∥22 + λ∥f(xi)− f(x̃i)∥22

)
+ α

(
∥f(xi)∥1 + ∥f(x̃i)∥1

)
(6)

We list the performance of our SAE based on different
activations on the AR dataset in Table IV. We can see that
hyperbolic tangent usually achieves the best performance. It
is worth noting that ReLU is usually used for Convolutional
Neural Networks (CNN) and demonstrate good performance
for image classification. But many tricks, including the mo-
mentum, weight decay, early stopping, are used to optimize
the objective function in CNN. In our objective function
optimization, we simply use the L-BFGS to optimize the
objective function. Many existing works [49][38] have shown
that different optimization methods will greatly affect the
performance of deep neural networks. Maybe more advanced
optimization method and more tricks help improve the perfor-
mance of ReLU.

TABLE IV
PERFORMANCE COMPARISON WITH DIFFERENT ACTIVATION FUNCTIONS.

(%)

sigmoid ReLU tanh
AR 62.81 53.96 85.21

Extended Yale B 74.76 63.02 82.22

H. Extension: SSAE for Face Verification

Besides face recognition, our model can also be used for
face verification. Specially, we tested our work on the LFW
dataset under the constrained without outside data protocol.
The performance of different methods under such protocol
is listed in Table. V. Interestingly, though our work is de-
signed for learning features to make faces of the same person
represented similarly, the performance of our model for face
verification is not bad. By learning more sophisticated distance
metric [50] with our face representation simultaneously, the
performance of our method on LFW probably can be further
boosted.

TABLE V
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON THE

LFW DATASETS. (%)

Method AUC
V1-like/MKL, funneled[51] 0.7935

APEM (fusion), funneled[52] 0.8408
MRF-MLBP[53] 0.7908

Fisher vector faces[54] 0.8747
Eigen-PEP[55] 0.8897

MRF-Fusion-CSKDA[56] 0.9589
SSAE 0.8548



10

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a supervised auto-encoder, and
use it to build deep neural network architecture for extracting
robust features for SSPP face representation. By introducing
a similarity preservation term, our supervised auto-encoder
enforces faces corresponding to the same person to be rep-
resented similarly. Experimental results on the AR, Extended
Yale B, and CMU-PIE datasets demonstrate clear superiority
of this module over other conventional modules such as DAE
or DLN.

In view of the size of images and training sets, we restrict
the image size to be 32 × 32, and only images of a handful
of subjects are used to train the network. For example, only
20 subjects are used on the CMU-PIE and AR datasets, and
only 28 subjects on the Extended Yale B dataset. Obviously
more training samples will improve the stability of the learnt
network and larger images will improve the face recognition
accuracy [57].
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