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Structural representations of images

* Computer vision seeks to understand visual structures.
* Poses, contours, 3D shapes, ...
* Physically conceptualized, perceptible by humans

* Deep neural networks can learn latent representations.
* Desired properties: distributed, sparse, transferable, ...
* Not as conceptualized and interpretable as explicit structures
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Structural representations of images

* Computer vision seeks to understand visual structures.
* Poses, contours, 3D shapes, ...
* Physically conceptualized, perceptible by humans

* Deep neural networks can learn latent representations.
* Desired properties: distributed, sparse, transferable, ...
* Not as conceptualized and interpretable as explicit structures

* Typically, extra supervision is needed to bridge the gap between
latent representations and explicit structures

* costly to obtain and often unavailable

Can we train a deep neural network to get image
representations of explicit structures without supervision?
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The explicit structure

Can we train a deep neural network to get image
representations of explicit structures without supervision?

* We consider a specific type of explicit structures:

Object landmarks

* Compact representation of object shapes

* Generally applicable to many object categories
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Our framework
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Technical outline
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Technical outline

| Unsupervised |

* Unsupervised object ocovan
landmark discovery A A

* A fully differentiable neural
network architecture

Image
reconstruction

features

Training signal

* The image reconstruction can encourage
the learning of informative landmarks and features.
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Overview of our neural network architecture
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Overview of our neural network architecture

Landmark
coordinates

> 7

Unsupervised
landmark discovery

e A differentiable formulation

* Unsupervised constraints to
define a valid landmark detector

Input
image

Related work:

James Thewlis, Hakan Bilen, and Andrea Vedaldi,
“Unsupervised learning of object landmarks by factorized spatial embeddings,”
In ICCV, 2017.
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Landmark detector: Architecture
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Landmark detector: Architecture
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From heatmaps to coordinates

Ours:

A foreground Isotropic Gaussian
heatmap approximation

- (s )

|

Landmark
coordinate

* Averaged coordinate weighted by the heatmap
* (x,y) is differentiable with respect to the heatmap
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Landmark discovery
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* The neural network can be used to output landmark coordinates.

* However, without additional training objectives,
the landmark coordinates can be arbitrary latent features.

3 desirable properties for a landmark detector
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Property 1: Concentration of heatmap values

Original Gaussian
heatmap heatmap

For a detector,

the output heatmap should |

concentrate in a local region. ~ Earlier
stage

* Encourage the Gaussian

variance to be small.

Later
stage
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Property 2: Separation of landmarks

e Different landmarks should cover different visual semantics.

* Penalize if the pairwise distances among landmarks are too small.
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Property 3: Equivariance

* For a transformation g that does not change local visual semantics.

* The landmarks on the two images should satisfy the same
transformation g.
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Property 3: Equivariance

* For a transformation g that does not change local visual semantics.

* The landmarks on the two images should satisfy the same
transformation g.
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* Equivariance for landmark discovery has been explored by Thewlis et al, 2017.

* Ours are directly formulated on the landmark coordinate.

(Thewlis et al, 2017) James Thewlis, Hakan Bilen, and Andrea Vedaldi,
“Unsupervised learning of object landmarks by factorized spatial embeddings,” In ICCV, 2017.
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Property 3: Equivariance — the transformation

* Random thin-plate-spline (TPS) to synthesize the transformation g
* Global affine: Translation, Scaling, Rotation
* Local TPS:

* For videos, also use the optical flows as the transformation g

Our paper: Unsupervised Discovery of Object Landmarks as Structural Representations



Overview of our neural network architecture
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Overview of our neural network architecture

L andmark-based
extraction of
latent features

* Weighted average-pooling with
differentiable pooling masks

Latent features
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Landmark-based feature extraction
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Landmark-based feature extraction
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Landmark-based feature extraction
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Landmark-based feature extraction

Latent feature
attached to
each landmark
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Landmark-based feature extraction
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Overview of our neural network architecture
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Overview of our neural network architecture
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Overview of our neural network architecture
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Landmark-based decoding

Gaussian heatmap with  Uniform heatmap
fixed variance for BG

sB «|« B

Normalization across channels
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Landmark-based decoding: all landmarks
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Landmark-based decoding: all landmarks
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Landmark-based decoding: all landmarks
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Landmark-based decoding: all landmarks
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Overview of our neural network architecture
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Overview of our neural network architecture
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Experimental results
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Landmark discovery: Faces, 10 landmarks

Thewlis
at al.

F |

(Thewlis et al.) James Thewlis, Hakan Bilen, and Andrea Vedaldi,
“Unsupervised learning of object landmarks by factorized spatial embeddings,” In ICCV, 2017.
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Unsupervised discovery: Faces, 10 landmarks
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Forehead Lower-lip  Mouth-corner Right-eyebrow  Forehead
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Q Incorrect landmarks @ Expected correct location
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Unsupervised discovery: Faces, 10 landmarks
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Thewlis
at al.

Forehead Lower-lip  Mouth-corner Right-eyebrow  Forehead
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the left the right the forechead  the left side the left
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Unsupervised discovery: Faces, 30 landmarks
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Unsupervised discovery: Faces, 30 landmarks
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Unsupervised landmark discovery: Cat head
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Unsupervised landmark discovery: Cat head
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Unsupervised landmarks: shoes, cars, animals, MNIST
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Unsupervised landmark discovery: Human3.6 M




Unsupervised landmark discovery: Human3.6 M
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Quantitative evaluation: Regression to Ground Truth Landmarks

* Train a linear regression model to map the discovered landmark to
human-annotated landmarks without finetuning the neural
network.

Discovered Human-annotated
landmarks landmarks

Linear
regression

R
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MAFL faces (5 target landmarks)

Supervised Thewliseta;, Ours
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Semi-supervised learning

* Better landmark detector using less training samples

10
9
8 % TCDCN (error: 7.95)
Localization 7
6
error 5 MTCNN (error: 5.39)
4 Ours (10 landmarks)
3 Ours (30 landmarks)
2 ] ] ] ]
0 0.5 1 1.5 2
# label samples

500 training
samples
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Cars, cat heads, human bodies

Car (10 discovered, 5 target) 11.42 Localization
error
Car (24 discovered, 5 target) T
Cat (10 discovered, 7 target) 26.76
26.94

Cat (20 discovered, 7 target)

7.51

Human (16 discovered, 32 target)

4.14

o
011

10 15 20 25 30
B Thewlis etal. ®mQurs

Our paper: Unsupervised Discovery of Object Landmarks as Structural Representations



Facial attribute classification

* Landmark coordinates as visual representations

* Predicting 13 binary facial attributes that are related to the facial shape.

Arched Eyebrows, Bags Under Eyes, Big Lips, Big Nose, Double Chin, High Cheekbones, Male,
Mouth Slightly Open, Narrow Eyes, Oval Face, Pointy Nose, Receding Hairline, Smiling

F r
Method . caty .e Accuracy
dimension
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Facial attribute classification

* Landmark coordinates as visual representations

* Predicting 13 binary facial attributes that are related to the facial shape.

Arched Eyebrows, Bags Under Eyes, Big Lips, Big Nose, Double Chin, High Cheekbones, Male,
Mouth Slightly Open, Narrow Eyes, Oval Face, Pointy Nose, Receding Hairline, Smiling

F r
Method . caty .e Accuracy
dimension

FaceNet (top-layer) 128 80.0
FaceNet (conv-layer) 1792 82.4

[FaceNet] Florian Schroff, Dmitry Kalenichenko, and James Philbin, “FaceNet: A unified embedding

for face recognition and clustering,” in CVPR, 2015
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Image manipulation

* Discover landmarks and extract latent features from an image.

* Manipulate the landmarks to generate new images [ videos.

Discovered Manipulated landmarks

landmarks
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Image manipulation: Human body

* Discover landmarks and extract latent features from an image.

* Manipulate the landmarks to generate new images [ videos.

Discovered Manipulated landmarks

landmarks

manipulating all 16 landmarks
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Conclusions

* Unsupervised object landmark discovery as image representations
with explicit structures

* A fully differentiable neural network architecture
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Conclusions

* Unsupervised object landmark discovery as image representations
with explicit structures

* A fully differentiable neural network architecture

* Our unsupervised model can

* produce meaningful landmarks

* perform competitively to supervised facial landmark detector

* provide a neural-network interface that humans can manipulate
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Unsupervised Discovery of Object Landmarks as Structural Representations

Percentage of reaching the target landmarks:

Thank you!

Project page
(Code & results):

http://ytzhang.net/projects/1lmdis-rep
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